13799 计算机辅助产品设计

Rhino 是 Rhinoceros (犀牛)的简称,是美国 Robert McNeel&Assoc 公司开发的一种专业 3D 造型设计软 件,它可以广泛地应用于三维动画制作、工业设计、科学研究以及机械设计等领域

Rhino7 常见的应用领域:

产品设计领域、建筑设计领域、珠宝设计领域

Rhino7 软件特色:

Rhino7 新功能: SubD 工具、QuadRemesh 工具、设计表达工具

插件接口丰富: Grasshopper、RhinoGOLD、Bongo、RhinoBIM、RhinoShoe、RhinoCFD、V-Ray 良好的文件兼容性

软件下载与安装:

下载: Rhino7 从 Rhino 中文官网下载试用,长期使用建议购买正版

安装:执行安装软件中的 SetupRhino. exe 文件,输入序列号,然后按照提示步骤安装即可。

Rhino7 工作界面:

菜单栏、指令提示行、工具列群组(工具栏)、边栏工具列(核心区域)、辅助工具列、工作视图、状态 栏

NURBS 曲线原理:

NURBS 是做曲面物体的一种造型方法。NURBS 造型总是由曲线和曲面进行定义,所以在 NURBS 表面里生成一 条有棱角的边是很困难的

NURBS 有四个要素: 1 阶数、2 控制点序列、3 节点序列、4 控制点权值序列。

控制点的权值原理:

控制点的权值是控制点对曲线或曲面的牵引力,权值越高,曲线或曲面越接近控制点。

曲线连续性

1. 曲线的 G0 连续

曲面连续性

NURBS 曲面连续性的概念与曲线连续性相同,但操作的方法不同。达到 G1 或 G2 连续的曲面是基于一系列相互保持 G1 或 G2 的曲线放样得到的。

不同曲线、曲面连续性的应用

以无线耳机为例,如图所示。箭头所指饿两个曲面相交处有明显的结构线的效果,即为曲面的 G0 连续。这样的曲面可以体现产品外观硬朗的视觉效果,突出产品的结构关系。

坐标系

世界坐标系、工作平面坐标系

坐标输入方法

2D 坐标输入、3D 坐标输入

Rhino 7 软件中的坐标系与 AutoCAD 中的坐标系相同,其坐标输入方式也相同,即如果仅以 X,Y 格式输入则表达为 2D 坐标,若以 X,Y,Z 格式输入就是 3D 坐标。2D 坐标输入和 3D 坐标输入统称为绝对坐标输入。 当然,坐标输入方式还包括相对坐标输入

设置工作平面原点

设置工作平面原点是通过定义原点的位置来建立新的工作平面

设置工作平面至物件

设置工作平面至物件可以在作业视图中将工作平面移动到物件上。物件可以是曲线、平面或曲面。

预设工作视图

工作视图可以分为3个工作视图、4个工作视图和最大化工作视图,也可以新增工作视图。打开 Rino 7 软件时,默认的是4个工作视图,如图所示

导入背景图片辅助建模

对于一些比较复杂的模型,则需要实物图片或概念设计草图作为建模的参考,以提高建模的准确率和速度。 使用背景图命令可以在工作视图中放置和调整背景图,以作为描绘和设计分析的参考,作为建模辅助的物 件,背景图不会出现在渲染图像中。(一个工作窗口只能放置一个背景图,并且背景图本身不可以进行缩 放、移动、旋转等操作)

图层

新图层、新子图层、删除图层、上移、下移、上移一个父图层

图层可以用来组织物件,可以同时对一个图层中的所有物件做同样的改变。选中物体,可以在图层工具栏中对该物体进行属性上的变化,包括改变显示颜色,隐藏或显示物体,可以补充编辑物体可见性不足。更利于导入 Keyshot 软件中渲染出图

单位

在 Rhino 软件中,单位选项可以根据使用者的需要,灵活地更改度量单位。绝对公差影响建模的准确程度, 使用者可以根据建模准确程度的要求调正绝对公差的数值。在建模时,模型单位一般设置为毫米,默认的 绝对公差为 0.001

建模辅助

操作轴、物件锁定、快捷键、记录构建历史

Rhino 7 核心建模工具

曲线绘制工具

控制点曲线、内插点曲线、弹簧线、螺旋线、在两条曲线之间建立均分曲线

曲线操作与编辑工具

曲线圆角、曲线斜角、连接、可调式混接、弧形混接、衔接、对称、偏移、往曲面法线方向偏移、偏移曲面上的曲线、延伸、调整封闭曲线的接缝、从断面轮廓线建立曲线、重建、截断

曲面绘制工具

指定三或四个角建立曲面、以平面曲线建立曲面、从网线建立曲面、放样、直线挤出、沿着曲线挤出、单 轨扫掠、双轨扫掠、旋转成型

曲面操作与编辑工具

曲面圆角、延伸曲面、不等距曲面圆角、混接曲面、偏移曲面、衔接曲面

实体绘制工具

立方体、圆柱体、球体、椭圆体:从中心点、圆管、挤出封闭的曲线、挤出曲面

实体操作与编辑工具

布尔运算联集、布尔运算差集、布尔运算相交、布尔运算分割、自动建立实体、封闭的多重曲面薄壳、将 平面洞加盖、抽离曲面、边缘圆角、线切割、打开实体物件的控制点、建立圆洞

Rhino 7 辅助建模工具

复制类工具

移动、复制、旋转(2D旋转、3D旋转)、缩放(单轴缩放、二轴缩放、三轴缩放)、镜像、阵列(矩形 阵列、环形阵列、沿着曲线阵列、在曲面上阵列)

对齐与扭曲工具

对齐、扭转、弯曲

合并和打撒工具

组合、群组物件、合并边缘、炸开

SubD 的建模方式与特点

特点: SubD 在保持自由造型精确度的同时还可以进行快速编辑,使精确、有机的建模变得更加容易; SubD 的建模方式: 与 T-Splines 插件原理相同。都是通过对 SubD 物件上的各元素(点,线,面)以推、 拉、挤出的方式进行调整,在实时互动中探索复杂的自由曲面造型。不同的是,SubD (细分曲面)显示速 度较快于 T-Splines 插件

SubD 创建工具

SubD 圆锥体工具: 创建细分圆锥体、创建细分平顶椎体

SubD 球体工具: 创建细分球体、创建细分椭圆体

SubD 圆柱体工具、SubD 环状体工具、SubD 立方体工具

SubD 放样工具

细分单轨扫掠、细分双轨扫掠、细分放样、多管细分物件

SubD 的边缘工具

添加和移除锐边:移除锐边、添加锐边

插入细分边缘

制作斜边、缝合边与移动边:网格或细分斜角、缝合网格或细分物件的边缘或定点、滑动网格或细分物件 的边缘或顶点

SubD 细分工具

细分工具基础命令:转换为细分物件、对细分面再细分、追加到细分、在网格或细分上插入点、删除和合并网格面、填补细分网格洞

SubD 桥接与对称:桥接网格或细分

SubD 挤出与偏移:挤出细分物件、偏移细分

SubD 四角化网格:用四边面重建网格

SubD 选择与过滤器工具

选取细分物件、选取循环边缘、选取环形边缘、选取面循环、以笔刷选取、过滤器运用

Grasshopper 界面介绍

菜单栏

菜单栏中包含"文件""编辑""视图""显示""解决方案""帮助"6项菜单。

电池工具栏

电池工具栏是一组在电池标题栏中主要运用"参数""数学""集合""向量""曲线""曲面""网格""相交""变形""显示""袋鼠 2""循环"12 项工具。工具栏是 Grasshopper 的核心,汇聚了参数化设计中常用的工具命令,以图标的形式提供给用户,提高工作效率。

视图栏

视图栏主要包含打开或保存文档、调整工作区的显示大小等操作。

输出结果显示栏

输出结果显示栏中可以调整显示效果、显示质量等功能

Grasshopper 参数构建基本逻辑

参数化建模是利用电池之间的不同组合,快速地计算建模。它可以对建模过程中的每一步进行细化处理, 形成了严谨的操作步骤。在计算过程中,如果电池组无法进行计算,需要继续推敲操作步骤,查看是否有 遗漏或多余的步骤。

Grasshopper 常用电池介绍

参数电池、数学电池、集合电池、向量电池、曲线电池、曲面电池、网格电池、相交电池、变形电池、显 示电池

Grasshopper 常用运算器介绍

参数类、指令类、面板类、数字类、集合类

Grasshopper 数据结构类型与变换

Grasshopper 运用数据进行建模,通过可调节参数和控制变量生成所需要的模型。Grasshopper 的数据结构 中包含线形数据和树形数据。其中,线形数据可分为单个数据和多个数据。

RhinoGold 在珠宝首饰设计中的应用

RhinoGold 是一款针对 Rhino 软件开发的适用于珠宝设计的插件,使用者可以快速、轻松、舒适地创建珠宝 模型,并支持 3D 打印

RhinoGold 常用功能

浏览器、材质库、用户文件夹管理

RhinoGold 常用命令介绍

"放样"是通过两条或两条以上的曲线形成的一个曲面,可以通过参数的调整使放样的形态产生变化 "单轨扫掠"是通过断面图形在一条路径上扫掠运动而形成的曲面,路径曲线需要根据不同路径位置和不同 截面数据形成合理的曲面形态。

"双轨扫掠"是沿着两条路径通过数条定义曲面形成的断面曲线从而建立的曲面。

轨迹旋转

"动态阵列",相较于"直线阵列"与"举行阵列"命令,"动态阵列"更加灵活并适用于构建形态各异的珠宝首饰。 "编辑"命令是通过控制点对模型进行变形与调整

Keyshot10 的设计应用

Keyshot(The Key to Amazing Shots)是基于 LuxRender 内核的实时光线跟踪与全域照明程序。基于 LuxRender 技术开发的软件无需复杂的设定,通过对材质、环境、光照、贴图进行模块化设定,可以得到即时的 3D 渲染影像效果

Keyshot10 基础操作

模型导入:将需要渲染的 3D 模型导入到 keyshot 中,设置选择 Z 轴向上的方向,保证模型在导入 keyshot 后保持直立,也可以在导入模型后通过移动工具来调整模型的位置,且使得模型需贴合地面

场景编辑:场景列表被称之为场景树,场景列表中包含了"场景设置""相机""环境"选项

照明与相机设置:在"照明"标签是对模型照明质量进行设置。其中包含"照明预设值"、"环境照明"、 "通用照明"、"渲染技术"选项卡可进行设置(照明预设值:可对照明模型类别进行选择或编辑,程序 预设了五种常用的照明模式以应对大多数模型照明情况;环境照明:可对"阴影质量"进行参数设置,若 勾选"地面间接照明"选项,程序会自动将照明预设值进行自定义设置;通用照明可以对"射线反弹"进 行参数设置;渲染技术:可修改渲染模式)

图像设置: 图像面板可对输出的图片分辨率进行参数设置,并对即时渲染输出的画面效果进行调整。分辨 率的调整只针对输出图像本身,不会影响渲染速度。

图像调整面板中包含"基本"和"摄影"两种模式,"基本"模式可对图像的色差及伽马值等进行调整,"摄影"模式则是在基本模式的基础上增添了与色调映射、曲线调整、颜色显现相关的参数设置。

Keyshot10 改进了"基本"模式中的"调节"功能,除了"去燥混合"功能外,新添加了"萤火虫滤镜(Firefly)"效果,可将图像中由于物理灯光照射的荧光斑得以优化,是一种新的图像样式"降噪"滑块,使得图像即时渲染输出效果更为整洁。

渲染设置:

对产品进行一系列场景、模型、材质等设置后,就可以渲染出图了。

单击工具栏中的"渲染"打开"渲染"对话框便可以对离线渲染进行参数设置了,还可以根据离线渲染对 象类型特点进行针对性设置。

Keyshot10 属性设置:

材质类型与运用:材质可视为材料与质感的结合。渲染程序中,材质的赋予则是模型可视化属性的结合, 包含模型表面的色彩、纹理、透明度等属性设置,可将用户需要的材质属性准确的应用到模型部件中,从 而渲染出逼真写实的图像视觉效果。

贴图与标签:

纹理贴图: 关系到模型的外观和质感,可以丰富材质的细节,体现模型材质的自然感属性面板中的"纹理"选项卡,有"漫反射"、"高光"、"凹凸"、"不透明度"选项;

贴图映射: "纹理"中各个通道被赋予纹理贴图之后,需要根据模型的形状设置对应的映射方式,使模型上的纹理贴图效果最佳。

Keyshot10提供平面、框、圆柱形、球形、UV、相机和节点7中常用的映射类型

标签:标签内置于"材质"属性面板中,可以使用户快速的在模型中放置标签或 LOGO 等内容,也是 Keyshot 独有的贴图系统。

三种标签: 纹理标签、材质标签、视频标签"

节点材质编辑: 材质图是对材质模块化视觉化编辑的窗口,取代原本列表形式的编辑模式,以连接节点的 方式使得材质结构更为清晰。

节点材质包含半透明、塑料、实心玻璃、平坦等 30 多种材质